CTEQ GLOBAL QCD ANALYSIS * PDFs for showering programs* PDFs with a variable QCD coupling Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration with J. Huston, M. Guzzi, H.-L. Lai, Z. Li, S. Mrenna, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan June 23, 2010 #### **CTEQ-Tung Et Al.: ongoing activities** - PDFs for leading-order Monte-Carlo programs (arXiv:0910.4183) - lacktriangle Uncertainty in $lpha_s$ in the CTEQ PDF analysis (arXiv:1004.4624) - General-purpose NLO PDF fits - CTEQ6.6 set (published in 2008)→ CT09 (not released) → CT10 (pre-released within CTEQ) - combined HERA and Tevatron Run-2 lepton asymmetry data are included - new statistical methods and parametrization forms - Benchmarking of heavy-quark contributions 2009 Les Houches Proceedinas - Constraints on color-octet fermions (with Berger, Guzzi, Olness) - Exploration of statistical methods and PDF parametrizations (Pumplin, arXiv:0909.0268 and 0909.5176) #### CT09MC PDF's for leading-order Monte-Carlo generators at the LHC Lai, Huston, Mrenna, P. N., Stump, Tung, Yuan, JHEP 1004, 035 (2010) Related studies: Sherstnev, Thorne, arXiv:0711.2473; Jung, Sjostrand @ the HERA-LHC workshop - **Leading-log** showering programs (PYTHIA, HERWIG,...) will remain ubiquitous tools in the observable future - We wish to construct improved PDFs for showering programs at the LHC, to be used when NLO calculations (with or without showering) are not applicable for some reason - These PDFs do not have to be "strictly at leading order", because showering introduces contributions beyond LO #### Requirements for LO-MC PDFs - LO DGLAP evolution - Steep **LO** gluon PDF g(x,Q) at small x, required by models of underlying event - when combined with LO matrix elements, reproduce NLO rapidity distributions for key LHC processes (production of $W^{\pm}, Z^0, H^0...$) - \Rightarrow are about the same as NLO PDFs at large x, or exceed them #### Resulting PDFs at Q=85 GeV Q value: 85 GeV, for parton: g #### Q value: 85 GeV, for parton: u #### Is this liminal creature viable? Let's examine the bones, focusing on fixed-order cross sections. Modifications by parton showering (in PYTHIA) are smaller than the dependence on PDFs (⇒backup slides) - NLO cross sections: more predictive - LO cross sections: more uncertain (=flexible) **Option 1:** Optimize the factorization scale μ_{LO} **Option 2:** Optimize the factor $K = \sigma_{NLO}(\mu_{NLO})/\sigma_{LO}(\mu_{NLO})$ (i.e., the floating normalization of σ_{LO}) For $d\sigma_{NLO}/dy$, etc.,optimize **both** μ_{LO} and K to reproduce normalization and shape #### CT09MC PDFs: selection of data - Perform a **LO** fit to - ► CTEQ6.6 set of experimental data from DIS, production of vector bosons and jets (2700 points) - **pseudodata** at $\sqrt{s}=14$ TeV, containing **NLO predictions** probing typical combinations of PDFs at various (x,Q): - $\Diamond d\sigma/dy$ for $pp \to W^\pm X$, $pp \to Z^0 X$, $pp \to H^0 X$; $d\sigma/dM_{t\bar{t}}$ for $pp \to t\bar{t}X$; $d\sigma/dM_{b\bar{b}}$ for $gg \to b\bar{b}$ at $M_{b\bar{b}}$ of 10-50 GeV All cross sections are at fixed order; modifications by showering are examined outside of the fit Vary K_i and/or $\mu_{LO,i}$ in the fit #### Three CT09MC PDF sets | PDF set | CT09MCS | CT09MC1 | CT09MC2 | |---------------------|----------|---------|---------| | $\mu_{LO,i}$ | Varied | Fixed | Fixed | | K_i | Varied | Varied | Varied | | Loops in α_s | 2 | 1 | 2 | | Momentum | | | | | sum rule | enforced | relaxed | relaxed | lacktriangledown relaxation of the momentum sum rule (Sherstnev, Thorne) by 10-15% produces a more flexible $g(x,\mu)$, smaller K_i-1 ### Reconciling LO with the global data - $\chi^2/d.o.f.$ is worse at LO than at NLO by 20-30% - When the (mostly high-Q) LHC pseudodata are included, the agreement with the (mostly low-Q) real data deteriorates #### Therefore: - pseudodata errors (χ^2 weights) are chosen to balance between the agreement with the real data and pseudodata - \blacksquare two-loop α_s improves χ^2 - Variable $\mu_{LO,i}$ and K_i improve χ^2 - relaxed momentum sum slightly improves χ^2 ### $d\sigma/dy$ for conventional LO PDFs LO ME-LO PDF (CTEQ6L1) vs. LO-NLO (CTEQ6.6M) vs. NLO-NLO (CTEQ6.6M) - Significant differences in normalizations and shapes between LO-CTEQ6L1 and LO-CTEQ6.6M predictions - Unphysical forward-backward peaking in the LO-CTEQ6L1 d\u00f3/dy for W⁺ production #### CT09MCS (scale) set Two-loop $\alpha_s(\mu)$; vary μ and K; enforce momentum sum #### Agreement with normalization and shape of NLO cross sections | | W^+ | W^- | Z | H | $t ar{t}$ | $b'\overline{b'}$ | |---------|---------------------|---------------------|------------|---------------------|------------|----------------------------| | μ_i | 1.96 M _W | 1.96 M _W | 1.96 M_Z | 1.06 M _H | 1.41 M_t | $0.40~M_{b'\overline{b'}}$ | | K_i | 1.11 | 1.09 | 1.09 | 1.87 | 2.09 | 4.09 | One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum #### W+ rapidity distribution #### Best-fit K factors | Besi-III K I | actor | S | |--------------|-------|------| | | MC1 | MC2 | | W^+ | 1.00 | 1.02 | | W- | 0.99 | 1.00 | | Z^0 | 0.98 | 1.00 | | H^0 | 1.22 | 1.32 | | t ar t | 1.09 | 1.09 | | $b'ar{b}'$ | 2.70 | 3.13 | | mom. sum | 1.10 | 1.14 | | | | | LO cross sections are plotted without ${\cal K}$ factors One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum #### Z rapidity distribution #### Best-fit K factors | actor: | S | |--------|---| | MC1 | MC2 | | 1.00 | 1.02 | | 0.99 | 1.00 | | 0.98 | 1.00 | | 1.22 | 1.32 | | 1.09 | 1.09 | | 2.70 | 3.13 | | 1.10 | 1.14 | | | MC1
1.00
0.99
0.98
1.22
1.09
2.70 | LO cross sections are plotted without ${\cal K}$ factors One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum #### SM Higgs boson rapidity distribution #### Best-fit K factors | Besi-III K I | acion | S | |--------------|-------|------| | | MC1 | MC2 | | W^+ | 1.00 | 1.02 | | W^- | 0.99 | 1.00 | | Z^0 | 0.98 | 1.00 | | H^0 | 1.22 | 1.32 | | t ar t | 1.09 | 1.09 | | $b'ar{b}'$ | 2.70 | 3.13 | | mom. sum | 1.10 | 1.14 | | | | | LO cross sections are plotted without K factors One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum #### tt mass distribution | Doot fit | 77 | factors | |----------|----|---------| | DESI-III | n | factors | | DESI-III N | acioi. | 5 | |------------|--------|------| | | MC1 | MC2 | | W^+ | 1.00 | 1.02 | | W^- | 0.99 | 1.00 | | Z^0 | 0.98 | 1.00 | | H^0 | 1.22 | 1.32 | | $tar{t}$ | 1.09 | 1.09 | | $b'ar{b}'$ | 2.70 | 3.13 | | mom. sum | 1.10 | 1.14 | LO cross sections are plotted without K factors ## CT09MC approximation for other LHC cross sections... ... may or may be not adequate in general, depending on the similarity to the fitted cross sections ...works reasonably well for $pp \to H^0 X$ via vector boson fusion, for a few other examined processes # Uncertainty in α_s in the CTEQ6.6 and CT10 PDF analysis arXiv:1004.4624 - Two leading theoretical uncertainties in LHC processes are due to α_s and the PDFs - These are not independent uncertainties; how can one quantify their correlation? - Which central $\alpha_s(M_Z)$ and which error on $\alpha_s(M_Z)$ are to be used with the existing PDFs? - What are the consequences for key LHC processes $(gg \rightarrow H^0$, etc.)? ### Uncertainty in α_s in the CTEQ-TEA PDF analysis arXiv:1004.4624 Recent activity to examine these questions, e.g.: - **MSTW** (arXiv:0905.3531) - $ightharpoonup lpha_s(M_Z)$ is an **output** of the global fit (constrained by the hadronic scattering only) - ▶ several sets of error PDFs, each with its own $\alpha_s(M_Z)$ value \Rightarrow lengthier calculations - lacktriangle The $lpha_s$ uncertainty and PDF uncertainty are inseparable - NNPDF (in 2009 Les Houches Proceedings, arXiv:1004.0962): - $ightharpoonup lpha_s(M_Z) = 0.119 \pm 0.002$ is taken as an **input** - ho $lpha_s-$ PDF correlation is examined with \sim 1000 PDF replicas and found to be small - **H1+ZEUS** (arXiv:0911.0884): sensitivity of the HERAPDF set to $\delta \alpha_s(M_Z) = \pm 0.002$ is explored #### CTEQ6.6FAS analysis ■ Take the "world-average" $\alpha_s(M_Z)=0.118\pm0.002$ as an **input**: $$\left. lpha_s(M_Z) \right|_{\mbox{in}} =$$ 0.118 \pm 0.002 at 90% C.L. ■ Find the theory parameter $\alpha_s(M_Z)$ as an **output** of a global fit (CTEQ6.6FAS): $$\left. lpha_s(M_Z) \right|_{\mbox{OUT}} = 0.118 \pm 0.0019$$ at 90% C.L. lacktriangle The combined PDF+ $lpha_s$ uncertainty is estimated as $$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{22+1} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$ - **Problem**: each PDF set comes with its own α_s ⇒ cumbersome - A simple workaround exists! ### A quadrature sum reproduces the α_s -PDF correlation H.-L. Lai, J. Pumplin #### **Theorem** In the quadratic approximation, the total α_s+PDF uncertainty $\Delta\sigma$ of the CTEQ6.6FAS set, with all correlation, reduces to $$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{\alpha_s}^2},$$ #### where - lacktriangledown $\Delta X_{CTEQ6.6}$ is the CTEQ6.6 PDF uncertainty from 44 PDFs with the same $lpha_s(M_Z)=0.118$ - $\Delta X_{\alpha_s} = (X_{0.120} X_{0.116})/2$ is the α_s uncertainty computed with two central CTEQ6.6AS PDFs for $\alpha_s(M_Z) = 0.116$ and 0.120 The full proof is given in the paper and backup slides # PDF and α_s uncertainties for $gg \to H$ and $t\bar{t}$ production ## Full and reduced fits with variable α_s : cross sections | Process | CT | EQ6.6+C | TEQ6.6A | AS | CTEQ6.6FAS | |--|--|---|--|--|--| | $t\overline{t}$ (171 GeV) | σ_0 | $\Delta \sigma_{PDF}$ | $\Delta \sigma_{\alpha_S}$ | $\Delta \sigma$ | $\sigma_0 \pm \Delta \sigma$ | | LHC 7 TeV | 157.41 | 10.97 | 7.54 | 13.31 | 160.10 ± 13.93 | | LHC 10 TeV | 396.50 | 18.75 | 16.10 | 24.71 | 400.48 ± 25.74 | | LHC 14 TeV | 877.19 | 28.79 | 30.78 | 42.15 | 881.62 ± 44.27 | | $gg \to H \ (120 \ {\rm GeV})$ | σ_0 | $\Delta \sigma_{PDF}$ | $\Delta \sigma_{\alpha_S}$ | $\Delta \sigma$ | $\sigma_0 \pm \Delta \sigma$ | | Tevatron 1.96 TeV | 0.63 | 0.042 | 0.032 | 0.053 | 0.64 ± 0.055 | | LHC 7 TeV | 10.70 | 0.31 | 0.32 | 0.45 | 10.70 ± 0.48 | | LHC 10 TeV | 20.33 | 0.66 | 0.56 | 0.87 | 20.28 ± 0.93 | | LHC 14 TeV | 35.75 | 1.31 | 0.94 | 1.61 | 35.63 ± 1.70 | | | | | | | | | $gg \to H \ (160 \ {\rm GeV})$ | σ_0 | $\Delta \sigma_{PDF}$ | $\Delta \sigma_{\alpha_S}$ | $\Delta \sigma$ | $\sigma_0 \pm \Delta \sigma$ | | $gg \rightarrow H \ (160 \ {\rm GeV})$
Tevatron 1.96 TeV | σ_0 0.26 | $\Delta \sigma_{PDF}$ 0.026 | $\Delta \sigma_{\alpha_S}$ 0.015 | $\Delta \sigma$ 0.030 | $\sigma_0 \pm \Delta \sigma$ 0.26 ± 0.031 | | | | | | | | | Tevatron 1.96 TeV | 0.26 | 0.026 | 0.015 | 0.030 | 0.26 ± 0.031 | | Tevatron 1.96 TeV
LHC 7 TeV | 0.26
5.86 | 0.026
0.16 | 0.015
0.18 | 0.030
0.24 | 0.26 ± 0.031
5.88 ± 0.26 | | Tevatron 1.96 TeV LHC 7 TeV LHC 10 TeV | 0.26
5.86
11.73 | 0.026
0.16
0.33 | 0.015
0.18
0.33 | 0.030
0.24
0.47 | 0.26 ± 0.031
5.88 ± 0.26
11.72 ± 0.50 | | Tevatron 1.96 TeV LHC 7 TeV LHC 10 TeV LHC 14 TeV | 0.26
5.86
11.73
21.48 | 0.026
0.16
0.33
0.68 | 0.015
0.18
0.33
0.56 | 0.030
0.24
0.47
0.88 | 0.26 ± 0.031 5.88 ± 0.26 11.72 ± 0.50 21.43 ± 0.94 | | $\begin{tabular}{ll} Tevatron 1.96 TeV \\ LHC 7 TeV \\ LHC 10 TeV \\ LHC 14 TeV \\ \hline $gg \to H$ (250 GeV) \\ \end{tabular}$ | 0.26 5.86 11.73 21.48 σ_0 | 0.026 0.16 0.33 0.68 $\Delta \sigma_{PDF}$ | 0.015 0.18 0.33 0.56 $\Delta \sigma_{\alpha_S}$ | 0.030 0.24 0.47 0.88 $\Delta \sigma$ | $\begin{aligned} 0.26 &\pm 0.031 \\ 5.88 &\pm 0.26 \\ 11.72 &\pm 0.50 \\ 21.43 &\pm 0.94 \\ \sigma_0 &\pm \Delta \sigma \end{aligned}$ | | $\begin{tabular}{ll} Tevatron 1.96 TeV \\ LHC 7 TeV \\ LHC 10 TeV \\ LHC 14 TeV \\ gg \rightarrow H~(250 \ GeV) \\ Tevatron 1.96 TeV \\ \end{tabular}$ | 0.26 5.86 11.73 21.48 σ_0 0.055 | 0.026 0.16 0.33 0.68 $\Delta \sigma_{PDF}$ 0.0099 | 0.015 0.18 0.33 0.56 $\Delta \sigma_{\alpha_S}$ 0.0044 | 0.030 0.24 0.47 0.88 $\Delta \sigma$ 0.011 | 0.26 ± 0.031 5.88 ± 0.26 11.72 ± 0.50 21.43 ± 0.94 $\sigma_0 \pm \Delta \sigma$ 0.058 ± 0.012 | The full and reduced methods perfectly agree #### Summary #### CT09MC PDFs - a reasonably successful attempt to construct PDFs for LO showering programs - by their design, the PDFs reproduce key LHC inclusive cross sections at NLO - compatible with existing tunes of MC programs #### Summary II #### CTEQ6.6AS PDF sets: ■ 4 alternative CTEQ6.6 fits for $$\alpha_s(M_Z) = 0.116, 0.117, 0.119, 0.120$$ - sufficient to compute uncertainty in $\alpha_s(M_Z)$ at \approx 68% and 90% C. L., including the world-average $\alpha_s(M_Z)=0.118\pm0.002$ as an input data point - The CTEQ6.6AS α_s uncertainty should be combined with the CTEQ6.6 PDF uncertainty as $$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{CTEQ6.6AS}^2}$$ ■ The total uncertainty ΔX reproduces the full correlation between $\alpha_s(M_Z)$ and PDFs #### **Summary III** Heavy-quark benchmarking, new statistical methods, and other developments #### **Backup slides** #### Effect of parton showering on CT09MC predictions PYTHIA predictions for $gg \rightarrow H$, with and without contributions from the initial-state radiation Kinematic showering effects are mild, compared to the PDF dependence, for invariant masses $\gtrsim 100~{\rm GeV}$ #### Quadrature theorem for 2 parameters $$\Delta X_1^2 = \frac{1}{4} (X(B) - X(D))^2 \qquad \Delta X_0^2 = \frac{1}{4} (X(A) - X(C))^2$$ #### Quadrature theorem for 2 parameters, cont. $$\Delta X^{2} = \frac{1}{4} \left[(X(A) - X(C))^{2} + (X(B) - X(D))^{2} \right]$$ = $\Delta X_{0}^{2} + \Delta X_{1}^{2}$ ### **Our findings** Total PDF+ α_s errors ΔX are the **same** when found (a) from a full fit with floating α_s , or (b) by adding ΔX_{PDF} and ΔX_{α_s} in quadrature - black CTEQ6.6 PDF uncertainty - Blue filled PDF+ α_s uncertainty of the fit with floating $\alpha_s(M_Z)$ - Green hatched PDF+ α_s uncertainty added in quadrature #### Correlation cosine between CTEQ6.6FAS PDFs and $\alpha_s(M_Z)$ Based on the method in the CTEQ6.6 paper, PRD 78, 013004 (2008) #### CTEQ6.6FAS; correlation of $\alpha_o(M_Z)$ with $f_o(x,Q)$ $$\cos \varphi = \frac{1}{4\Delta X \Delta Y}$$ $$\times \sum_{i=1}^{23} \left[\left(X_i^{(+)} - X_i^{(-)} \right) \left(Y_i^{(+)} - Y_i^{(-)} \right) \right]$$ Variations in $\alpha_s(M_Z)$ mostly affect: - \blacksquare g(x,Q) at $x \approx 0.01$ - c(x,Q) at $x \approx 0.1$ - Singlet quark at $x \approx 0.5$